
Performance Measurements of a Multiprocessor Sprite Kernel

John H. Hartman
John K. Ousterhout

University of California at Berkeley
Computer Science Division

Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720
{jhh,ouster}@sprite.Berkeley.EDU

ABSTRACT

This report presents performance measurements made of the Sprite operating sys-
tem running on a multiprocessor. A variety of micro- and macro-benchmarks were run
while varying the number of processors in the system, and both the elapsed time and the
contention for kernel locks were recorded. A number of interesting conclusions are
drawn from the results. First, the macro-benchmarks show acceptable performance on
systems of up to five processors. Total system throughput increases almost linearly with
the system size. Projections of the lock contention measurements show that the max-
imum performance will be reached with about seven processors in the system. Second, it
is often difficult to predict the effect of a benchmark on particular kernel locks. It was
anticipated that different benchmarks would saturate different kernel monitor locks.
After running the benchmarks it was found that a single master lock was the biggest ker-
nel bottleneck, and that one of the micro-benchmarks had saturated a different lock than
the one at which it was targeted. The kernel locking structure has become so complex as
the system has evolved that it is hard to determine cause and effect relationships. Third,
although the kernel contains many locks, only a few of them are performance
bottlenecks. Performance measurements such as those presented here allow the relevant
parts of the kernel to be redesigned to eliminate the bottlenecks. Such a redesign is
needed to allow the system to scale gracefully beyond about seven processors.

1. Introduction

Sprite is a network operating system being developed at Berkeley [7]. From its inception Sprite has
been designed to run on a multiprocessor. To avoid performance bottlenecks due to kernel contention, the
kernel is multi-threaded to allow more than one processor to execute kernel code at the same time.
Exclusive access to kernel resources is ensured through the use of locks. There is a limit to the number of
processors that can be in the kernel and doing useful work, however. Once a lock saturates, additional pro-
cessors will not significantly increase system throughput. The goal of our study was to determine how well
Sprite scales with the size of a multiprocessor, by running a variety of benchmarks and measuring both
contention for kernel locks and overall system performance.

The benchmarks were chosen either to stress particular kernel locks or to resemble user workloads
seen in the Sprite development environment. The former were used to measure how well the system
behaves when locks became saturated, and to identify locks that are potential bottlenecks. This informa-
tion can then be used to restructure the kernel to improve its behavior. The latter were used to measure the
hhhhhhhhhhhhhhhhhh
The work described here was supported in part by the Defense Advanced Research Projects Agency under contract
N00039-85-R-0269 and in part by the National Science Foundation under grant ECS-8351961.



- 2 -

system’s ability to scale while running realistic workloads, determining both the limit on system size and
the effect of adding another processor to the system.

The results indicate that contention for the kernel context switch code is the biggest limiting factor to
scaling the system. The lock protecting this code becomes very heavily utilized with only five processors
in the system. Measurements of the realistic workloads indicate that the lock will become saturated with
about seven processors in the system.

The rest of the paper is structured as follows. Section 2 describes the types of locks used in the
Sprite kernel, and Section 3 describes the multiprocessor hardware used to obtain the measurements. The
instrumentation added to the Sprite kernel is outlined in Section 4, and a description of the benchmarks is
in Section 5. The results are in Section 6, followed by comments in Section 7 and concluding remarks in
Section 8.

2. Kernel locks

In order for a multi-threaded kernel to function correctly it must contain mechanisms for providing
both mutual exclusion and synchronization between threads. Other efforts to design multiprocessor operat-
ing systems have used semaphores [1, 3, 8]. Semaphores are appealing because they can provide both
mutual exclusion and synchronization, eliminating the need for separate mechanisms. Sprite, however,
uses monitor-style locking and condition variables to provide these services.

There are two basic types of locks in the Sprite kernel: monitor locks and master locks. Monitor
locks are used to implement monitors [5], with semantics similar to those in Mesa [6]. Monitor locks are
acquired at the start of a procedure and released at the end. If a process tries to lock a monitor lock and
another process has it locked already, then the process is put to sleep. The release of a monitor lock causes
all processes that are waiting on the lock to be awakened and simultaneously try to reacquire the lock.

The other type of lock in the Sprite kernel is the master lock. Master locks are used in much the
same manner as monitor locks, except that they are used to to provide mutual exclusion between processes
and interrupt handlers. A master lock is simply a spin lock that is acquired with interrupts disabled. If a
master lock is already in use when an attempt is made to grab it, then the processor retries the locking
operation until it succeeds. Interrupts are disabled to prevent a situation where an interrupt is taken after a
master lock has been acquired and the interrupt routine spins forever waiting for the lock to be released.

Locks have three different styles of usage in the Sprite kernel. These three styles correspond to dif-
ferent locking granularities. Fine-grained locks allow a high degree of concurrency, but they increase the
number of locks that a particular thread must acquire, thereby decreasing its performance. Coarse-grained
locks reduce the amount of concurrency, but improve the performance of a single thread. The trick in
designing the kernel is deciding the placement and granularity of locks.

The coarsest granularity locks in the kernel are single locks that are used to protect sections of code.
Locks used in this manner are referred to as code locks. If the lock is a monitor lock then the resulting con-
struction is similar to the monitored modules described in [6]. An example of this style of use is the moni-
tor lock around the Sprite virtual memory system. There is a single monitor lock that must be grabbed
whenever a routine in the virtual memory system is called, thus synchronizing access to the virtual memory
system as a whole.

The remaining two styles of usage are variations on a theme. They both associate locks with data
rather than with sections of code. For this reason they are referred to as data locks. Data locks that use a
monitor lock are referred to as monitored objects in the Mesa paper. One style of usage associates a lock
with a data structure. In order to manipulate the data structure the lock must be held. A lock that protects a
queue is an example. The Sprite file cache has a single lock that protects the various lists of cache blocks,
such as the free list, dirty list, etc. In order to modify any of these lists the file cache lock must be held.

The finest granularity locks are associated with individual data objects. A processor must hold this
lock before modifying the contents of the object. For example, each block in the Sprite file cache has a
lock, and that lock must be held when accessing the contents of the block.

In addition to ensuring mutual exclusion between threads, Sprite must also provide a means for
threads to wait for interesting conditions to occur. Condition variables are used for this purpose. If a pro-
cess waits on a condition variable while holding a lock it will release the lock and be put to sleep. At a



- 3 -

later time another process will signal the condition variable, causing all processes waiting on the variable to
awake and try to reacquire the lock. This signaling mechanism has the same semantics as Mesa’s broad-
cast facility.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Major Locks in the Sprite Kerneliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Type Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
sched_Mutex Master controls access to con-

text switch code and run
queueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

handleTableLock Monitor
(code)

controls access to table
of all known file handlesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

vmMonitorLock Monitor
(code)

lock around all virtual
memory functionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

perPCBLock Monitor
(data)

must be held when ac-
cessing contents of a
process control blockiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

pdevLock Monitor
(data)

controls access to indivi-
dual pseudo-device han-
dlesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

exitLock Monitor
(code)

provides exclusive ac-
cess to code for destroy-
ing a processiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 1. Some of the major locks in the Sprite kernel. Monitor lock types are qualified by a designation in
parentheses. Code indicates that there is a single lock protecting a critical section of code. Data designates
those locks for which there is one lock per object. Handles are Sprite’s equivalent to Unix’s inodes. Pseudo-
devices are explained later in this paper.

Figure 1 is a list of the major locks in the Sprite kernel. There are many other locks in the kernel,
such as locks associated with the file system cache, system timers, and the RPC system, but none of these
have a significant impact on system performance.

3. The SPUR Hardware

This section outlines some of the features of the hardware used in the study. Sprite does not require
any special hardware support for running on a shared-memory multiprocessor, other than an atomic test-
and-set operation and coherent processor caches. Details of the hardware are only provided to allow com-
parisons to be made to more familiar machines.

At the time of this study the only multiprocessor that Sprite supported was the SPUR multiprocessor
[4]. SPUR is a RISC microprocessor developed at Berkeley as part of a project to study the impact of
adding symbolic processing support and multiprocessing to RISC architectures. Individual SPUR proces-
sor boards can be combined to form a shared-memory multiprocessor. The machine used in this study has
32 Mb of shared memory and up to five processors. Each SPUR processor board has a 128-kbyte data
cache that is kept consistent by hardware.

The SPUR prototype used in this study is not a particularly fast machine. The processor cycle time is
140 ns. Due to a design error the on-chip instruction buffer is not functional, causing instruction fetches to
require several cycles. As a result, a SPUR processor can execute about 1.5 native MIPS. Furthermore, a
lack of compiler optimization leads to inefficient code. We estimate that the resulting performance is
equivalent to about 0.5 VAX MIPS.

4. Instrumentation

Contention for kernel resources was measured by collecting information on lock behavior. We
added fields to each lock to record the number of successful lock acquisitions (referred to as hits), and the
number of unsuccessful attempts to acquire the lock (misses). For some types of locks, such as the locks



- 4 -

associated with process control blocks, the statistics for an individual lock aren’t as useful as those for the
type as a whole. For this reason the individual lock counts were consolidated and recorded on a per-type
basis. Recording the information on a per-type basis also makes it easy to handle locks that are created and
destroyed dynamically. The lock counts for these transient locks are added to the total for the type when
the lock is destroyed.

The definition of what constitutes a lock miss is different for monitor locks and master locks. For
master locks there is at most one miss per hit. If a process misses on a lock it spins until the lock is free,
then locks it. This sequence is counted as one miss, followed by a hit. On the other hand, it is possible for
monitor locks to have more misses than hits. If multiple processes are waiting when a lock is released then
they will all be awakened and will attempt to grab the lock. Only one will succeed and the rest will go
back to sleep. If a process is awakened in this fashion and does not get the lock a miss is recorded. This
makes it possible for the number of misses on a monitor lock to be greater than the number of hits.

In addition to instrumenting the locks we also created new system calls to clear the lock information
and to copy the information to user-level. These two calls were used to reset the lock information at the
beginning of a test and gather the information when it completed.

5. Benchmarks

All of the benchmarks are intended to stress the operating system. Compute-bound applications
were avoided for that reason. The benchmarks can be divided into two classes. Realistic workloads are
represented by the macro-benchmarks. These benchmarks are comprised of real programs that represent
the Sprite development environment. The behavior of the kernel while running the macro-benchmarks is
indicative of its behavior under real workloads, and allows projections to be made of maximum system
size.

Individual parts of the kernel were stressed by running a series of micro-benchmarks. For example,
a micro-benchmark may consist of repeated forking of children, or repeated message passing between
processes. Such repetitive behavior is rarely seen in real programs, but it does allow the behavior of dif-
ferent parts of the kernel to be isolated and measured.

5.1. Macro-benchmarks

5.1.1. PmakeInd

The pmakeInd benchmark is intended to be representative of a multi-user environment with multiple
independent compilations taking place. PmakeInd recompiles Csh from its sources using the Pmake pro-
gram. Pmake is similar to the UNIX† "make" utility, except that it runs the compilations in parallel when-
ever possible [2]. The pmakeInd benchmark runs a separate instance of Pmake on each processor and each
instance uses separate copies of the sources. This eliminates the Pmake program and contention for the
source files as causes of performance degradation. Each instance of Pmake runs two compilations con-
currently, ensuring that each processor remains highly utilized.

5.1.2. Pmake

The pmake benchmark is also a compilation of the Csh sources, except that only one instance of
Pmake is run, rather than one per processor. Pmake attempts to use all of the processors in the system by
running two compilations per processor. The purpose in running this benchmark is to see how well a single
parallel application can harness the processing power available in a multiprocessor. Ideally the application
will realize linear speedup as the number of processors is increased. A speedup that is less than linear is
due to either contention in the kernel or lack of concurrency in the application. Since we are primarily
interested in the former effect rather than the latter, the final link of the Csh binary was eliminated from the
benchmark. This increased the concurrency inherent in the computation and increased contention for ker-
nel resources.

hhhhhhhhhhhhhhhhhh
† UNIX is a trademark of Bell Laboratories.



- 5 -

5.1.3. Troff

The Troff benchmark consists of running the text formatting program Troff on the man page for Csh.
The resulting output is sent to /dev/null. Each processor runs a different instance of Troff.

5.2. Micro-benchmarks

Twelve micro-benchmarks were run, of which only six are discussed in this paper. The other six
pertained to stressing the file system, by reading files, opening files, etc. The results obtained were not
significantly different from the first six and are therefore omitted in the interest of brevity.

5.2.1. Fork

The fork benchmark consists of a process that repeatedly forks off a child process using the fork()
system call. The parent waits for the child to die before forking another child. The child process exits
immediately. This benchmark should stress the process creation and destruction components, and the ker-
nel virtual memory system. The context-switch code will also be heavily utilized.

5.2.2. Fexec

The fexec benchmark is similar to the fork benchmark. A parent process repeatedly forks off chil-
dren, waiting for each one to die before forking the next. The child process uses the exec() routine to
create another instance of itself instead of exiting. This new instance then exits, allowing the parent to con-
tinue. The fexec benchmark should stress the same components as the fork benchmarks. Any differences
in behavior are due to the call to exec().

5.2.3. Mem

Mem is a benchmark that stresses the virtual memory system. The process repeatedly increases the
size of its heap using the sbrk() system call. The new heap pages are not touched. Once the process
reaches a maximum size it execs itself and starts over. Mem is targeted at the virtual memory system, par-
ticularly the component that is responsible for maintaining process page tables.

5.2.4. Cswitch

The cswitch benchmark consists of two processes that pass a byte back and forth using a pair of
pipes. If this pair of processes is run on a single processor, then two context switches are required per
round trip and the context switch code should receive heavy utilization. The context switches can be
avoided on a multiprocessor if the processes are run on different processors. In order to ensure that the
context switches occur one pair of processes is run per processor in the system.

5.2.5. Pdevtest

Pdevtest stresses the pseudo-device implementation. Pseudo-devices are like devices except that
they are implemented by user-level server processes [9]. They provide a mechanism for allowing trusted
services, such as display servers and network communication protocols, to be implemented at user-level
rather than in the kernel. A client process accesses a pseudo-device in the same manner as a real device.
The kernel then forwards the request to the user-level server, instead of to a kernel device driver. Pseudo-
devices are similar to the UNIX "pty" mechanism, the only difference being that all operations on a
pseudo-device, such as open, close, and ioctls, are passed through to the server process.

The pdevtest benchmark creates one pseudo-device that is written to by multiple clients. Each client
repeatedly writes one byte to the server.

5.2.6. PdevtestInd

This variation on the pdevtest benchmark creates multiple pseudo-devices. One server and one client
is created for each instance of the benchmark that is run (i.e for each processor in the system). The intent
is to see if there are any performance bottlenecks in the pseudo-device implementation that occur when
there is a single server vs. multiple servers.



- 6 -

6. Results

The results are divided up into sections on elapsed time for running the benchmarks, calculations of
the incremental throughput for each additional processor, monitor lock behavior, and master lock behavior.
These measurements indicate that the micro-benchmarks suffer heavily from saturation of critical
resources. The macro-benchmarks also experience performance degradation, but to a lesser degree.

Ratio
pmakeInd
troff
pmake

Processors

Elapsed time ratio

54321

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2. A graph of the ratio of the multiprocessor elapsed time to run the macro-benchmarks to the uniproces-
sor elapsed time. The workload was scaled with the system size (except for the pmake benchmark), causing the
ratio for an ideal system to be a horizontal line at 1.0. A ratio that is greater than 1.0 indicates that the increase
in system throughput is less than linear. The pmake benchmark has a fixed workload, hence its ideal curve
should be 1/n, where n is the number of processors.

6.1. Elapsed time

The elapsed time ratio for the macro-benchmarks is shown in Figure 2. The ratio is calculated by
dividing the time it takes a system with n processors to finish n benchmarks by the time it takes a unipro-
cessor to finish one benchmark. For all but the pmake benchmark the workload is scaled with the number
of processors, so an ideal system would have a constant ratio of 1.0. The curve for the pmake benchmark
looks different because the workload is not scaled with the number of processors. The compilation of the
Csh sources always runs faster with more processors. The ideal elapsed time ratio for the pmake bench-
mark is 1/n, where n is the number of processors in the system. The measured ratio for the pmake bench-
mark is very close to the ideal, falling behind only when there are five processors in the system.

The troff and pmakeInd benchmarks have elapsed time ratios that are actually better (i.e. less) than
the ideal value of 1.0. This is because there is a certain amount of background processing that must be
done that is independent of system size. This extra work is due to other processes running on the system
and interrupts. As the number of processors in the system is increased, the per-processor load induced by
background processing is decreased, allowing each processor to allocate more cycles to the benchmark.
While running the troff and pmakeInd benchmarks the slowdown from kernel contention was more than
offset by the amortization of the background processing.

Figure 3 shows the elapsed time ratio for the micro-benchmarks. Contention causes the elapsed time
of all the benchmarks to increase over the range of system sizes tested. For two of the benchmarks the
elapsed time initially decreases due to amortization of background processing costs, but this benefit is
eventually outweighed by contention for kernel resources.

The cswitch benchmark has a worse than linear slowdown: a system with five processors actually
takes longer to complete the work than a uniprocessor should. None of the other benchmarks do this badly,
but neither do they come close to the ideal ratio. All of the benchmarks show a steady increase in the
elapsed time ratio once there are three processors in the system. This suggests that the micro-benchmarks
are severely affected by contention for kernel resources and the system throughput does not increase



- 7 -

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1 2 3 4 5

Elapsed time ratio

Processors

cswitch
fexec
fork
mem
pdevtest
pdevtestInd

Ratio

Figure 3. This is a plot of the ratio of the multiprocessor elapsed time to run the micro-benchmarks to the
uniprocessor elapsed time. As in Figure 2 an ideal system would have a ratio of 1.0. All of the benchmarks ex-
hibit an increase in the elapsed time as the system size increases.

significantly if the system is scaled beyond three processors.

6.2. Incremental throughput per additional processor

The incremental throughput of an additional processor is the net amount of work per unit time that
the processor adds to the system. Throughput is measured in processor units, which is the amount of work
per unit time done by a uniprocessor. Incremental throughput is derived by taking the throughput with n
processors in the system, and subtracting the throughput with n - 1 processors. The result is then normal-
ized to the throughput of a uniprocessor to obtain the incremental throughput in processor units.

troff
pmakeInd
pmake

Processors

Incremental throughput

54321

2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

-0.25
-0.50
-0.75
-1.00

per additional processor

Processor
units

Figure 4. Incremental throughput per additional processor while running the macro-benchmarks. Two of the
benchmarks have almost constant incremental throughput, indicating that the total system throughput is propor-
tional to the size of the system.

Figure 4 shows the incremental throughput per processor for the macro-benchmarks. The indepen-
dent compilation of Csh (pmakeInd) and the troff of the Csh man page (troff) curves both display a gain of
more than one processor unit when the second processor is added. As mentioned previously, this is due to
amortization of background processing. The troff benchmark does the best of all, maintaining an incre-
mental gain of almost one processor unit even for the fifth processor.



- 8 -

The pmake benchmark shows a gain of more than one processor unit of throughput for the third pro-
cessor, followed by decreasing gains for subsequent processors. Some of this effect is probably due to ker-
nel contention, although the lock miss ratios aren’t high enough to account for all of it. The rest is prob-
ably due to a lack of concurrency in the Pmake program. This is interesting because it suggests that
although there are five processors in the system, Pmake cannot make effective use of them.

units
Processor

per additional processor

pdevtestInd
pdevtest
mem
fork
fexec
cswitch

Processors

Incremental throughput

54321

2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

-0.25
-0.50
-0.75
-1.00

Figure 5. The incremental throughput added to the system by each processor, in processor units. These meas-
urements were taken while running the micro-benchmarks. All benchmarks show very little throughput gained
by adding additional processors once there are three processors in the system.

The micro-benchmarks all suffer from severe degradation in elapsed time as the number of proces-
sors is increased, therefore we would expect the incremental throughput per processor to diminish as well.
This result is seen in Figure 5. The throughput gained by adding additional processors drops off rapidly so
that the third processor does not add much, if any, processing power to the system. For a few of the bench-
marks the third processor actually produces negative processor units of throughput, in effect slowing the
system down. At this point the scheduler lock has become saturated, preventing additional processors from
doing anything useful.

6.3. Monitor lock measurements

The graphs of the macro-benchmark monitor lock miss ratios are shown in Figure 6. The miss ratio
of a lock is the number of misses on that lock divided by the number of hits. Contention for monitor locks
does not appear to be a major performance bottleneck for a system with five or fewer processors. The
maximum miss ratio for any benchmark is less than 18%. Extrapolation of the curves indicates that moni-
tor lock contention should not reach saturation levels until the system is scaled by a factor of three or four.

The highest monitor lock miss ratio occurs on the same lock for all the benchmarks. The kernel has
a single monitor lock, vmMonitorLock, that surrounds the entire virtual memory system. Any routines that
modify the virtual memory state must hold this monitor lock. When the virtual memory system was written
the emphasis was on correctness, rather than concurrency, hence vmMonitorLock’s monolithic nature.
However, the benchmarks suggest that system performance on large multiprocessors could be improved by
replacing the single vmMonitorLock with several locks on individual data structures.

The monitor lock miss ratios while running the micro-benchmarks are shown in Figure 7. Most of
the curves have small slopes and small maximum values. Exceptions are the pdevtest and cswitch bench-
marks. The causes of the contention can be found by examining the kernel code. The pdevtest benchmark
spends a lot of its time copying the data from the client’s address space to the server’s. A monitor lock
associated with the server process (perPCBLock) is held during the copy. If there are multiple clients then
this lock is a critical resource. With more than three clients the lock is held all of the time, causing the miss
ratio to reach almost two hundred percent. Each time a process releases the lock more than one process is
awakened causing more total misses than hits.



- 9 -

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5

Average

Processors

pmakeInd

troff

pmake
Processors

Highest

54321

40%

35%

30%

25%

20%

15%

10%

5%

0%

(vmMonitorLock)

(vmMonitorLock)

(vmMonitorLock)

Monitor lock miss ratios

Figure 6. Graphs of the monitor lock miss ratios while running the macro-benchmarks. The graph on the left is
the miss ratio averaged across all monitor locks. The graph on the right is the miss ratio of the lock with the
highest miss ratio. The name of the lock with the highest miss ratio is displayed in parentheses under the name
of the benchmark.

Monitor lock miss ratios
Average

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5
Processors

pdevtestInd

pdevtest

mem

fork

fexec

cswitch

Processors

Highest

54321

200%
180%
160%
140%
120%
100%
80%
60%
40%
20%
0%

(handleTableLock)

(vmMonitorLock)

(exitLock)

(vmMonitorLock)

(perPCBLock)

(pdevLock)

Figure 7. The average and highest monitor lock miss ratios while running the micro-benchmarks. Note that the
vertical scales on the two graphs are not the same. Benchmarks whose curves have a steep slope will not scale
well to larger systems due to saturation of a monitor lock. The initially high values for some benchmarks on a
one processor system are due to all of the benchmark processes exiting at once, causing a high miss ratio
although the absolute number of hits and misses is very low.



- 10 -

The cswitch benchmark uses pipes to pass a byte between processes. Each time a pipe is accessed a
monitor lock around the file handle table (handleTableLock) in the kernel is grabbed. Although different
pairs of processes use different pipes, they all need to grab the handle table monitor lock, causing a
bottleneck. This is a surprising result, since the cswitch benchmark was intended to stress the context
switch code. It is not always easy to predict what effect a particular kernel lock will have on a
benchmark’s performance.

Two other locks show up in the graph of the highest monitor lock miss ratio. ExitLock and
pdevLock have the highest miss ratio of any monitor lock while running the fork and pdevtestInd bench-
marks, respectively. The miss ratios are not high enough, however, to warrant replacing each of these
locks with multiple locks unless there are many more processors in the system.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5

Average

Processors

pmakeInd

troff

pmake
Processors

Highest

54321

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

(sched_Mutex)

(sched_Mutex)

(sched_Mutex)

Master lock miss ratios

Figure 8. Graphs of the master lock miss ratios while running the macro-benchmarks. All of the curves have a
steep slope due to contention for the scheduler lock.

6.4. Master lock measurements

The graphs in Figure 8 are plots of the master lock miss ratios for the macro-benchmarks. All of the
curves show increasing amounts of contention as the size of the system is increased. All of this contention
is due to sched_Mutex, the master lock around the scheduler. Sched_Mutex has a higher miss ratio than
any other lock in the kernel for almost all of the benchmarks. This is surprising, since our first intuition
was that various monitor locks would saturate first. It turns out that sched_Mutex is used in many different
places in the kernel. Its main function is to provide mutually exclusive access to the run queue, but it is
also used for other purposes, including synchronization when a miss occurs on a monitor lock (see Figure
9). As a result, an increase in the miss rate for monitor locks will increase the contention for sched_Mutex.

The graphs in Figure 10 are plots of the master lock miss ratio for the micro-benchmarks. The slopes
of the curves are quite steep -- all benchmarks have an average miss ratio on a five processor system that is
between fifty and eighty-five percent. The highest miss ratio for any lock was greater than eighty percent
for all benchmarks, and in some cases was higher than ninety percent. Once again this contention is for
sched_Mutex. Although the micro-benchmarks were targeted at an array of kernel monitor and master
locks, they all piled up on the scheduler lock. Clearly the importance of this single lock must be reduced.



- 11 -

Miss on monitor lock.
Lock sched_Mutex.
Put process on wait queue for monitor lock.
Remove first process from ready queue.
Context switch to the ready process.
Release sched_Mutex.

Figure 9. This sequence of events occurs when a process misses on a monitor lock. Note that sched_Mutex is
used to synchronize access to the queue of processes waiting for the monitor lock, as well as the ready queue.
This unnecessarily increases the total length of time that sched_Mutex is held. The addition of individual master
locks to synchronize access to the wait queue for each monitor lock would reduce the length of the critical sec-
tion protected by sched_Mutex and reduce its utilization.

Master lock miss ratios

(pdevLock)

(perPCBLock)

(vmMonitorLock)

(exitLock)

(vmMonitorLock)

(handleTableLock)
cswitch

fexec

fork

mem

pdevtest

pdevtestInd

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5

Average

Processors Processors

Highest

54321

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Figure 10. Graphs of the master lock miss ratio while running the micro-benchmarks. The steep slopes of the
curves are due to a heavy contention for the master lock around the scheduler.

7. Comments

A running Sprite kernel contains anywhere from five hundred to a thousand locks. Of these locks,
two repeatedly suffered more contention than the others. These two locks, sched_Mutex and vmMonitor-
Lock, account for most of the contention for kernel locks and represent serious obstacles to better system
performance. Both of these locks are code locks that protect large regions of the kernel code. In order to
reduce their impact they must be replaced by several data locks with a finer granularity. It is not necessary
to have single locks around the virtual memory system and the context switch mechanism. Replacing these
locks with data locks on the various kernel structures will increase the concurrency and system perfor-
mance.

There are a number of factors that cause system performance to depend heavily on contention for a
few locks. The first is ease of design. It is much simpler to design a system with a few locks than it is to
design one with many locks. Multiple locks may increase the concurrency, but they also increase the
chance of introducing race conditions and deadlocks. A single lock should be replaced by multiple locks
only if performance measurements indicate that the single lock is a bottleneck.

The second factor that causes performance-critical locks is that they develop during the evolution of
the kernel. Race conditions and deadlocks tend to occur as new features are added to the kernel. When a



- 12 -

kernel developer is faced with such an unwanted side-effect they typically rewrite their new feature to hold
the most prominent lock they can find. In this manner prominent locks tend to become more important,
until they are held in many places throughout the kernel for many different reasons. Such is the case with
sched_Mutex. Its influence grew as the kernel was modified and synchronization problems arose.

The underlying cause of both the design and development problems is the lack of tools. The graph
of lock dependencies in the Sprite kernel is fairly complex. Tools are needed to help understand the syn-
chronization requirements of the various kernel resources and where to place locks to satisfy those require-
ments. Once the locks are in place, tools are needed to measure the performance of the locks in order to
find the performance bottlenecks. Our measurements of kernel locks in Sprite found that it is not always
obvious which locks will be bottlenecks and why.

8. Conclusion

The elapsed time and incremental throughput measurements for the macro-benchmarks indicate that
the Sprite kernel gives acceptable performance on a machine with up to five processors. All of these
benchmarks showed an almost linear speedup as the system was scaled, and two of them showed almost
constant incremental throughput per processor. The performance degradation of the pmake benchmark was
primarily due to sequential processing in the application, rather than kernel contention. This underscores
the difficulty of writing a single application that can make full use of a multiprocessor’s processing power.

Although the macro-benchmarks exhibited suitable performance increases for the system sizes that
were measured, the sched_Mutex master lock approached saturation. With five processors in the system its
miss ratio was close to seventy percent, indicating that the lock suffered very heavy contention. From this
it would appear that without elimination of some of the more important bottlenecks the kernel will not sup-
port more than seven processors in the system efficiently, except for compute-bound applications.

Prior to undertaking this study we had assumed that the kernel monitor locks were the biggest perfor-
mance bottlenecks. In particular, it was feared that the single monitor lock around the virtual memory sys-
tem posed the biggest obstacle to scaling the number of processors in the system. It came a surprise that a
master lock, sched_Mutex, was more heavily utilized than the virtual memory system lock. We were also
surprised when micro-benchmarks stressed unintended locks. The behavior of kernel locks is difficult to
predict, even to the people who designed the system. Clearly there is a need for tools to help system
developers to better understand and modify the locking structures of multiprocessor operating systems.

9. Acknowledgements

We would like to thank Ken Lutz for putting together and maintaining the SPUR prototype, and
Mendel Rosenblum for his efforts in getting both Sprite and SPUR to run reliably.

10. References

1. M. J. Bach and S. J. Buroff, Multiprocessor UNIX Operating Systems, AT&T Bell Laboratories
Technical Journal 63, 8 (October 1984), 1733-1749.

2. A. Boor, PMake -- A Tutorial, Unpublished, June 1, 1988.

3. E. W. Dijkstra,, Hierarchical Ordering of Sequential Processes., in Operating Systems Techniques,
1972, 72-93.

4. M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A. Gibson, P. M.
Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S. A. Ritchie, D. A. Wood, B. G.
Zorn, P. N. Hilfinger, D. Hodges, R. H. Katz, J. Ousterhout and D. A. Patterson, SPUR: A VLSI
Multiprocessor Workstation, Computer Science Division Technical Report UCB/Computer Science
Dpt. 86/273, December 1985.

5. C. A. R. Hoare, Monitors: An Operating System Structuring Concept, Vol. 17, October 1974.

6. B. W. Lampson and D. D. Redell, Experiences with Processes and Monitors in Mesa.,
Communications of the ACM 23, 2 (February, 1980), 105-117.

7. J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, The Sprite Network Operating
System, IEEE Computer 21, 2 (Feb. 1988), 23-36.



- 13 -

8. U. Sinkewicz, A Strategy for SMP Ultrix, Usenix Conference Proceedings, June 1988, 203-212.

9. B. B. Welch and J. K. Ousterhout, Pseudo-Devices: User-Level Extensions to the Sprite File System,
Proc. of the 1988 Summer USENIX Conf., June 1988, 184-189.

John H. Hartman is a Ph.D candidate in the Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley. He is currently a member of the Sprite network
operating system project. His interests include operating systems, high-performance networks, and
computer architecture. He received an Sc.B. in computer science from Brown University in 1987.

John K. Ousterhout is a Professor in the Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley. His interests include operating systems, distributed
systems, user interfaces, and computer-aided design. He is currently leading the development of Sprite, a
network operating system for high-performance workstations. In the past, he and his students developed
several widely-used programs for computer-aided design, including Magic, Caesar, and Crystal.
Ousterhout is a recipient of the ACM Grace Murray Hopper Award, the National Science Foundation
Presidential Young Investigator Award, the National Academy of Sciences Award for Initiatives in
Research, the IEEE Browder J. Thompson Award, and the UCB Distinguished Teaching Award. He
received a B.S. degree in Physics from Yale University in 1975 and a Ph.D. in Computer Science from
Carnegie Mellon University in 1980.


